产品外壳散热计算

2016-09-27 推荐阅读 阅读:

产品外壳散热计算(一)
散热计算模型

散热计算模型

对灯具的热传导计算方法进行了讨论,提出对于灯具的散热计算方法使用等效电路的热阻法计算,可以直接算出灯具内温度关注点与环境温度的温差。有利于判断导热结构是否可行。文中还用一个LED灯具散热计算实例说明了这种计算过程。

Luxeon 大功率LED在散热性能方面大大地优于普通的小功率LED,电通道和热通道分离开,它的LED芯片都连接在一个金属的嵌片上,散热性能得到很大的改善。

但是,大功率LED用于特种灯具,或用于恶劣环境使用的灯具,这些灯具的外壳防护等级一般都在IP65以上,如果外壳为非金属(如塑胶)材料,尽管LED连接上了铝基板(MCPCB),但铝基板上的热量如果不能被有效地传导至外壳表面,则聚集的热量会使铝基板的温度急剧上升,导致温度过高,增加了LED失效的可能性,造成LED光衰加剧,寿命缩短。

理论上计算灯具散热的情况,灯具的导热理论有许多困难,主要的困难是传导和对流同时对热传导起着作用,而对流是在密闭空腔内的对流,边界条件十分复杂;传导也是要通过多层导热物质、多层界面,截面积通常又是不等的,导致热流线分布的情况很难在计算之前就能通过分析得到。

由于灯具是在开启后逐渐升温,最后达到热稳定状态,也就是说,热稳定状态时各点的温度最高,所以灯具的散热计算一般只考虑稳态的情况,瞬态的温度分布情况并不重要。对于稳态含热源在各向同性的单一介质中的导热服从Poisson方程[1]:

式中为介质的导热系数,q''''''为热源的发热功率。

由于灯具的结构是多种介质,所以在实际计算中,必须对每一种介质逐一求解上式,计算灯具内的温度场分布是十分困难,而且是没有必要的。实际上,我们所关心的是某些部位的温度是否在可以容忍的温度范围之内,只要计算出这些部位在达到热稳定时的温度即可。

本文对效等电路的热阻算法进行了探讨,热阻算法的好处是无需知道确切的环境温度,也不必求解灯具内的温度场,直接计算灯具内关注点的温升,困难是热流线的分布必须通过分析而不是计算得到,而这一过程往往又是很复杂的。

下面以一个实例的计算来说明等效电路的热阻算法。

灯具要求的基本结构如下图,LED 处于密闭的塑胶外壳内,右侧的绝热层较厚,比较起其他部分导热,其导热基本可以忽略不计,热量主要通过支撑架、塑胶外壳、橡胶外套, 然后通过外部空气对流散到空气中。

1.简化模型:

(1) 铝基板视为一个等温热源;

(2) 支撑板与与铝基板之间有一个附加导热层;

(3) 由于塑胶的热导率比空气的热导率高得多,所以,空气的导热可以忽略不计;

(4) 支撑板与塑胶外壳之间有一层附加导热层

(5) 塑胶外壳与橡胶外皮之间为紧密接触

(6) 铝基板与外壳之间的对流导热可以忽略不计[2]

所以总热阻:

R=R1+R2+R3+R4+R5+R6

其中

R1 为支撑板与铝基板之间的附加导热层的热阻;

R2 为支撑板的热阻;

R3 为散热板与塑胶外壳之间的附加导热层的热阻;

R4 塑胶外壳的热阻;

R5 为橡胶外皮的热阻;

R6 为橡胶外皮处于空气中对流换热的热阻[1]。

【产品外壳散热计算】

2.计算

下面分别计算各部分热阻:

上述各式中,

ki(i=1,2,3,4,5)为各介质的导热系数;

Ai(i=1,2,3,4,5)为各介质的导热等效截面积;

di(i=1,2,3,4,5)为各介质的导热长度;

上式中,

为平均换热系数;

L 为定性长度,在大圆柱对流换热情况下,通常取圆柱直径;

GrL和Pr分别为无量纲的格拉晓夫数和普朗特数,不同情况下的数值可以查表获得;

C 为适配系数,在层流的情况下通常取0.53~0.54;

A6为对流换热的有效面积;

k6为空气的导热系数。

于是总热阻为

R=R1+R2+R3+R4+R5+R6=86.37(W/K)

LED约有1W的功率变成热量则铝基板的温升为:

ΔT=(T2-T1)=qR=86.37 (K)

其中T2为铝基板温度,T1为环境温度。

若环境温度为40℃,则铝基板的温度将要达到126℃,此时LED的结温达到166℃,根据Lumileds公司的“Luxeon Reliability”一文中介绍,Luxeon LED的失效与温度的关系为:

这样高的温度Luxeon的失效几率比结温120℃时失效几率大92854倍,接近10万倍。这种温度下运行可靠性很差,所以这种导热结构不可行。从各个热阻分量看,主要的热阻是支撑板的传导热阻,改进必须是针对它的结构改进。

若采用另一种热传导结构,取消塑胶的支撑架,换成0.3mm厚的电解铜散热板,如下图:

其它部分不变,电解铜散热板的热阻为:

电解铜散热板的折边有6mm,这部分的等效热阻为:

于是,总热阻变为:

产品外壳散热计算(二)
散热计算方法

大功率LED的散热问题:

LED是个光电器件,其工作过程中只有15%~25%的电能转换成光能,其余的电能几乎都转换成热能,使LED的温度升高。在大功率LED中,散热是个大问题。例如,1个10W白光LED若其光电转换效率为20%,则有8W的电能转换成热能,若不加散热措施,则大功率LED的器芯温度会急速上升,当其结温(TJ)上升超过最大允许温度时(一般是150℃),大功率LED会因过热而损坏。因此在大功率LED灯具设计中,最主要的设计工作就是散热设计。

另外,一般功率器件(如电源IC)的散热计算中,只要结温小于最大允许结温温度(一般是125℃)就可以了。但在大功率LED散热设计中,其结温TJ要求比125℃低得多。其原因是TJ对LED的出光率及寿命有较大影响:TJ越高会使LED的出光率越低,寿命越短。

K2系列白光LED的结温TJ与相对出光率的关系。在TJ=25℃时,相对出光率为1;TJ=70℃时相对出光率降为0.9;TJ=115℃时,则降到0.8了。

:TJ=50℃时,寿命为90000小时;TJ=80℃时,寿命降到34000小时;TJ=115℃时,其寿命只有13300小时了。TJ在散热设计中要提出最大允许结温值TJmax,实际的结温值TJ应小于或等于要求的TJmax,即TJ≤TJmax。

大功率LED的散热路径.【产品外壳散热计算】

大功率LED在结构设计上是十分重视散热的。图2是Lumiled公司K2系列的内部结构、图3是NICHIA公司NCCW022的内部结构。从这两图可以看出:在管芯下面有一个尺寸较大的金属散热垫,它能使管芯的热量通过散热垫传到外面去。

大功率LED是焊在印制板(PCB)上的,如图4所示。散热垫的底面与PCB的敷铜面焊在一起,以较大的敷铜层作散热面。为提高散热效率,采用双层敷铜层的PCB,其正反面图形如图5所示。这是一种最简单的散热结构。【产品外壳散热计算】

热是从温度高处向温度低处散热。大功率LED主要的散热路径是:管芯→散热垫→印制板敷铜层→印制板→环境空气。若LED的结温为TJ,环境空气的温度为TA,散热垫底部的温度为Tc(TJ>Tc>TA),散热路径如图6所示。

在热的传导过程中,各种材料的导热性能不同,即有不同的热阻。若管芯传导到散热垫底面的热阻为RJC(LED的热阻)、散热垫传导到PCB面层敷铜层的热阻为RCB、PCB传导到环境空气的热阻为RBA,则从管芯的结温TJ传导到空气TA的总热阻RJA与各热阻关系为:

RJA=RJC+RCB+RBA

各热阻的单位是℃/W。

可以这样理解:热阻越小,其导热性能越好,即散热性能越好。

如果LED的散热垫与PCB的敷铜层采用回流焊焊在一起,则RCB=0,则上式可写成:

RJA=RJC+RBA

散热的计算公式

若结温为TJ、环境温度为TA、LED的功耗为PD,则RJA与TJ、TA及PD的关系为:

RJA=(TJ-TA)/PD (1)

式中PD的单位是W。PD与LED的正向压降VF及LED的正向电流IF的关系为:

PD=VF×IF (2)

如果已测出LED散热垫的温度TC,则(1)式可写成:

RJA=(TJ-TC)/PD+(TC-TA)/PD

则RJC=(TJ-TC)/PD (3)

RBA=(TC-TC)/PD (4)

在散热计算中,当选择了大功率LED后,从数据资料中可找到其RJC值;当确定LED的正向电流IF后,根据LED的VF可计算出PD;若已测出TC的温度,则按(3)式可求出TJ来。

在测TC前,先要做一个实验板(选择某种PCB、确定一定的面积)、焊上LED、输入IF电流,等稳定后,用K型热电偶点温度计测LED的散热垫温度TC。

在(4)式中,TC及TA可以测出,PD可以求出,则RBA值可以计算出来。

若计算出TJ来,代入(1)式可求出RJA。

这种通过试验、计算出TJ方法是基于用某种PCB及一定散热面积。如果计算出来的TJ小于要求(或等于)TJmax,则可认为选择的PCB及面积合适;若计算来的TJ大于要求的TJmax,则要更换散热性能更好的PCB,或者增加PCB的散热面积。

另外,若选择的LED的RJC值太大,在设计上也可以更换性能上更好并且RJC值更小的大功率LED,使满足计算出来的TJ≤TJmax。这一点在计算举例中说明。

各种不同的PCB

目前应用与大功率LED作散热的PCB有三种:普通双面敷铜板(FR4)、铝合金基敷铜板(MCPCB)、柔性薄膜PCB用胶粘在铝合金板上的PCB。

MCPCB的结构如图7所示。各层的厚度尺寸如表3所示。

其散热效果与铜层及金属层厚如度尺寸及绝缘介质的导热性有关。一般采用35μm铜层及

1.5mm铝合金的MCPCB。

柔*PCB粘在铝合金板上的结构如图8所示。一般采用的各层厚度尺寸如表4所示。1~3W星状LED采用此结构。

采用高导热性介质的MCPCB有最好的散热性能,但价格较贵。

计算举例

这里采用了NICHIA公司的测量TC的实例中取部分数据作为计算举例。已知条件如下:

LED:3W白光LED、型号MCCW022、RJC=16℃/W。K型热电偶点温度计测量头焊在散热垫上。

PCB试验板:双层敷铜板(40×40mm)、t=1.6mm、焊接面铜层面积1180mm2背面铜层面积1600mm2。

LED工作状态:IF=500mA、VF = 3.97V。

用K型热电偶点温度计测TC,TC=71℃。测试时环境温度TA = 25℃.

1.TJ计算

TJ=RJC×PD+TC=RJC(IF×VF)+TC

TJ=16℃/W(500mA×3.97V)

+71℃=103℃

2.RBA计算

RJA=(TC-TA)/PD

=(71℃-25℃)/1.99W

=23.1℃/W

【产品外壳散热计算】

3.RJA计算

RJA=RJC+RBA

=16℃/W+23.1℃/W

=39.1℃/W

如果设计的TJmax=90℃,则按上述条件计算出来的TJ不能满足设计要求,需要改换散热更好的PCB或增大散热面积,并再一次试验及计算,直到满足TJ≤TJmax为止。

另外一种方法是,在采用的LED的RJC值太大时,若更换新型同类产品RJC=9℃/W(IF=500mA时VF=3.65V),其他条件不变,TJ计算为:

TJ=9℃/W(500mA×3.65V)+71℃【产品外壳散热计算】

=87.4℃

上式计算中71℃有一些误差,应焊上新的9℃/W的LED重新测TC(测出的值比71℃略小)。这对计算影响不大。采用了9℃/W的LED后不用改变PCB材质及面积,其TJ符合设计的要求。

PCB背面加散热片

若计算出来的TJ比设计要求的TJmax大得多,而且在结构上又不允许增加面积时,可考虑将PCB背面粘在"∪"形的铝型材上(或铝板冲压件上),或粘在散热片上,如图10所示。这两种方法是在多个大功率LED的灯具设计中常用的。例如,上述计算举例中,在计算出TJ=103℃的PCB背后粘贴一个10℃/W的散热片,其TJ降到80℃左右。

这里要说明的是,上述TC是在室温条件下测得的(室温一般15~30℃)。若LED灯使用的环境温度TA大于室温时,则实际的TJ要比在室温测量后计算的TJ要高,所以在设计时要考虑这个因素。若测试时在恒温箱中进行,其温度调到使用时最高环境温度,为最佳。

另外,PCB是水平安装还是垂直安装,其散热条件不同,对测TC有一定影响,灯具的外壳材料、尺寸及有无散热孔对散热也有影响。因此,在设计时要留有余地。

1、2年以上电子设备热分析、热设计工作经验,了解有限元及传热模拟知识,有LED照明产品热设计者尤佳;

2、从事过电子产品散热模组的研究开发,对大功率LED散热系统设计有一定经验者优先,如:支架、基板、散热器等;

3、精通热传导、散热理论,能够独立分析产品的热能,对金属材料表面处理工艺的导热与散热性能有深入了解;

4、掌握常用散热技术、散热器选型方法,能够熟练使用热分析软件进行设计与仿真,如:Fluent、Ansys、Desingspace等;

5、有高度的责任心和敬业心,有团队合作精神和良好的沟通协调能力,能够独立完成项目开发。

3年以上LED照明产品光学设计工作经验,擅长LED 透镜设计,对光学模具有深入的了解,熟悉照明行业的相关标准;

2、精通光学原理,特别是各种透镜的原理及其应用,有扎实的光学基础知识,会分析光路中出现的干扰并找出解决办法;

3、熟练操作光学软件TracePro、Lighttools、ASAP、Calelux、 Zemax等光学设计软件之一。

4、严谨的工作态度,良好的团队协作能力、沟通能力.

能够解决 LED路灯防雨、防晒、通风、散热的处理要求;

5、熟悉照明行业相关标准及相应的测试方法,对LED照明产业发展方向有深入全面的了解;

6、具备较强的沟通、协调能力与项目管理知识;

7、有良好的职业道德,能吃苦耐劳,有钻研精神与工作热情,工作认真仔细;有较强的判断、决策、计划与执行能力;

8、熟练的掌握Pro/e、3DMX、CAD

好的表达能力和沟通能力,具有团队精神;

2、熟悉户外灯具、室内灯具、小夜灯等产品的开发、测试和生产;

3、熟悉LED灯珠及LED灯具的发光特性,熟悉二次光学设计;

4、熟练使用z

产品外壳散热计算

http://m.zhuodaoren.com/tuijian428568/

推荐访问:散热计算公式 热水散热计算

推荐阅读推荐文章

推荐内容

上一篇:上市公司债务融资期限 下一篇:4700夹器垫片